Controlling charge separation and recombination by chemical design in donor-acceptor dyads.
نویسندگان
چکیده
Conjugated donor-acceptor block co-oligomers that self-organize into D-A mesomorphic arrays have raised increasing interest due to their potential applications in organic solar cells. We report here a combined experimental and computational study of charge transfer (CT) state formation and recombination in isolated donor-spacer-acceptor oligomers based on bisthiophene-fluorene (D) and perylene diimide (A), which have recently shown to self-organize to give a mesomorphic lamellar structure at room temperature. Using femtosecond transient absorption spectroscopy and Time-Dependent Density Functional Theory in combination with the Marcus-Jortner formalism, the observed increase of the CT lifetimes is rationalized in terms of a reduced electronic coupling between D and A brought about by the chemical design of the donor moiety. A marked dependence of the CT lifetime on solvent polarity is observed, underscoring the importance of electrostatic effects and those of the environment at large. The present investigation therefore calls for a more comprehensive design approach including the effects of molecular packing.
منابع مشابه
Photoinduced electron transfer in supramolecular donor-acceptor dyads of Zn corrphycene.
Porphyrins have been used by various researchers as important building blocks of photofunctional molecules, while the number of studies on the excitation properties of the structural isomers of porphyrins is small when compared to those of porphyrins. In the present study, photoinduced electron transfer (ET) processes of supramolecular donor-acceptor dyads of 2,3,6,7,11,12,17,18-octaethylcorrph...
متن کاملUsing meta conjugation to enhance charge separation versus charge recombination in phenylacetylene donor-bridge-acceptor complexes.
A pair of donor-bridge-acceptor electron-transfer complexes, with a carbazole donor and a naphthalimide acceptor connected by either a para- or meta-conjugated phenylacetylene bridge, are synthesized and studied using time-resolved and steady-state spectroscopy. These experiments show that the charge separation times, which depend on the coupling of the donor and acceptor through the excited br...
متن کاملTemperature Dependence of Charge Separation and Recombination in Porphyrin Oligomer–Fullerene Donor–Acceptor Systems
Electron-transfer reactions are fundamental to many practical devices, but because of their complexity, it is often very difficult to interpret measurements done on the complete device. Therefore, studies of model systems are crucial. Here the rates of charge separation and recombination in donor-acceptor systems consisting of a series of butadiyne-linked porphyrin oligomers (n = 1-4, 6) append...
متن کاملReal-time observation of the formation of excited radical ions in bimolecular photoinduced charge separation: absence of the Marcus inverted region explained.
Unambiguous evidence for the formation of excited ions upon ultrafast bimolecular photoinduced charge separation is found using a combination of femtosecond time-resolved fluorescence up-conversion, infrared and visible transient absorption spectroscopy. The reaction pathways are tracked by monitoring the vibrational energy redistribution in the product after charge separation and subsequent ch...
متن کاملPhotoinduced charge separation in wide-band capturing, multi-modular bis(donor styryl)BODIPY-fullerene systems.
A new series of multi-modular donor-acceptor systems capable of exhibiting photoinduced charge separation have been designed, synthesized and characterized using various techniques. In this series, the electron donor was a BF2-chelated dipyrromethene (BODIPY) appended with two styryl linkers carrying two electron rich triphenylamine or phenothiazine entities. Fulleropyrrolidine linked at the me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 27 شماره
صفحات -
تاریخ انتشار 2016